Adenoviral gene delivery of pigment epithelium-derived factor protects striatal neurons from quinolinic acid-induced excitotoxicity.

نویسندگان

  • Tomomi Sanagi
  • Takeshi Yabe
  • Haruki Yamada
چکیده

The 50-kDa secreted glycoprotein pigment epithelium-derived factor (PEDF) is neuroprotective for various types of cultured neurons, but whether it is neuroprotective for neurons in vivo is not known. We examined the effects of adenovirus-mediated gene transfer of PEDF on quinolinic acid (QA)-induced neurotoxicity in rats. Adenoviral vector containing the human PEDF gene (Ad.PEDF) or Escherichia coli beta-galactosidase gene (Ad.LacZ) was directly injected into the right striatum 7 days before the injection of QA. Immunohistochemical analysis using antibodies specific for the neuronal markers dopamine and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa, neuronal nuclei, and choline acetyltransferase revealed that the QA-induced striatal damage was significantly reduced in Ad.PEDF-treated rats. Overexpression of PEDF also reduced the expression of the inflammation-related genes for interleukin 1beta, tumor necrosis factor alpha, and macrophage inflammatory protein 1alpha 1 day after QA injection. Deletion analysis of human PEDF protein demonstrated that overexpression of PEDFDelta44-121 failed to protect neurons against QA-induced excitotoxicity, whereas PEDFDelta78-121 retained the neuroprotective activity, suggesting that amino acid residues 44-77 of the PEDF sequence are essential for PEDF-mediated neuroprotection in vivo. These results provide the first evidence that PEDF and its deletion mutant PEDFDelta78-121 are effective in protecting CNS neurons against excitotoxicity in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Udk 619:616.831-003.8 Nerve Growth Factor Protects Cholinergic Neurons against Quinolinic Acid-induced Excitotoxicity in Wistar Rats

The etiology of neuronal death in neurodegenerative diseases, including Huntington's disease (HD) is still unknown. There could be a complex interplay between altered energy metabolism, excitotoxicity and oxidative stress. Excitotoxic striatal lesions induced by quinolinic acid (QA), were used to test for the neuroprotective actions of nerve growth factor (NGF) on striatal cholinergic and GABAe...

متن کامل

Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake

Ciliary neurotrophic factor (CNTF) is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs) could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injecti...

متن کامل

Pigment epithelium-derived factor induces pro-inflammatory genes in neonatal astrocytes through activation of NF-kappa B and CREB.

Pigment epithelium-derived factor (PEDF) is a potent and broadly acting neurotrophic factor that protects neurons in various types of cultured neurons against glutamate excitotoxicity and induced-apoptosis. Some of the effects of PEDF reflect specific changes in gene expression, mediated via activation of the transcription factor NF-kappa B in neurons. To investigate whether PEDF also modulates...

متن کامل

Cathepsin L Plays a Role in Quinolinic Acid-Induced NF-Κb Activation and Excitotoxicity in Rat Striatal Neurons

The present study seeks to investigate the role of cathepsin L in glutamate receptor-induced transcription factor nuclear factor-kappa B (NF-κB) activation and excitotoxicity in rats striatal neurons. Stereotaxic administration of the N-methyl-d-aspartate (NMDA) receptor agonist Quinolinic acid (QA) into the unilateral striatum was used to produce the in vivo excitotoxic model. Co-administratio...

متن کامل

Chronic Int~striatal Quinolinic Acid Produces Reversible Changes in Perikaryal Calbindin and Parvalbumin Xmmunoreactivity

We recently reported the use of a chronic dialytic delivery system for intrastriatal administration of quinolinic acid in the rat.” This system produces ~~~e~ration with some characteristics simihtr to posf ntortem brain tissue from Hun~on’s disease patients, including reduced cytochrome oxidase staining, a decreased number of Nissl-stained neurons, and relative sparing of striatal NADPH-diapho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 69 3  شماره 

صفحات  -

تاریخ انتشار 2010